20250324

2044E. Insane Problem - 1300

Codeforces Round 993 (Div. 4) Editorial

It’s not feasible to check all pairs of x and y because it takes O(n^2) time, but it’s possible for n. Even with the most strict case k=2, we only need to check n = 1, 2, 3, ..., 32 (2 ^ 32 = 4294967296 > 10 ^ 9).

Once n is fixed, we can simply count the intersection of two conditions.

for i in range(int(input())):
    k, l1, r1, l2, r2 = map(int, input().split())

    kn, ans = 1, 0

    while r2 // kn >= l1:
        # count the integer points in the intersection of
        # A. l1 <= x <= r1
        # B. ceil(l2 / k^n) <= x <= floor(r2 / k^n)
        # upper bound: min(r1, floor(r2 / k^n))
        # lower bound: max(l1, ceil(l2 / k^n))
        ans += max(
            0,
            min(r2 // kn, r1) - max((l2 - 1) // kn + 1, l1) + 1,
        )
        kn *= k

    print(ans)

In general, you can count the number of integer points in the intersection A and B, which is

max(0, min(upper bounds) - max(lower bounds) + 1)

It looks too obvious once I get to know the technique.

TIL


TODO:


index 20250323 20250325